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Abstract
The effect of sequence heterogeneity on the dynamics of molecular motors is
reviewed and analysed using a set of recently introduced lattice models. First,
we review results for the influence of heterogeneous tracks such as a single
strand of DNA or RNA on the dynamics of the motors. We stress how the
predicted behaviour might be observed experimentally in anomalous drift and
diffusion of motors over a wide range of parameters near the stall force and
discuss the extreme limit of strongly biased motors with one-way hopping.
We then consider the dynamics in an environment containing a variety of
different fuels which supply chemical energy for the motor motion, either on a
heterogeneous or on a periodic track. The results for motion along a periodic
track are relevant to kinesin motors in a solution with a mixture of different
nucleotide triphosphate fuel sources.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of molecular motors has been transformed in recent years with the increasing use
of single-molecule experiments [1, 2]. In one key experiment an external force is applied to a
molecular motor opposing its motion [3–6]. Typically, as the force is increased, the velocity of
the motor decreases until it is completely stalled. The behaviour of the velocity as a function
of force provides much information on the chemical cycle underlying the motion of the motor.
For example, the stall force is a direct estimate of the force exerted by the molecular motor.
The experiments have also motivated much theoretical work on the dynamics of the motors
[7–12]. Many of the models introduced belong to a more general class of models known as
ratchets [13–22]. Fitting the experimentally obtained velocity–force curves allows extraction
of detailed information on the chemical cycle of the motor [23–25].
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Most theoretical studies have focused on motors which move on featureless, or periodic
linear tracks [7–9, 23–25]. Such a description would be appropriate, for example, for kinesin
which moves along a microtubule filament, which is periodic, using only ATP for its motion
[26, 27]. However, in many cases the assumption of a periodic medium fails. Examples of
motors which move on heterogeneous tracks include RNA polymerase [4, 5] which moves
along DNA, ribosomes which move along mRNA, helicases [28, 29] which unwind DNA,
exonucleases [30, 31] which turn double-stranded DNA into single-stranded DNA and many
others. All these motors move along tracks which are inherently ‘disordered’ or heterogeneous
due to the underlying sequence of the linear template. Theoretically, molecular motors
moving along disordered tracks have received much less attention [32–34]. Another form
of heterogeneity which has largely been ignored arises from the different chemical fuels which
may be used by molecular motors to move along the track. For example, RNA polymerase uses
different nucleotide triphosphates (NTPs) which build the mRNA it produces, each supplying
a different amount of chemical energy, to move along a DNA strand. A different ‘annealed’
form of disorder (in contrast to the ‘quenched’ disorder embodied in a particular nucleotide
sequence) can be present even in molecular motors moving along perfectly periodic tracks in
a solution containing several distinct kinds of chemical fuels. For example, it is known that
kinesin can move using other nucleotide triphosphates (such as GTP) instead of ATP, albeit
less efficiently [35–37].

Recently, we have introduced a simplified model for molecular motors which allows
the effects of disorder to be studied in considerable detail [33]. We have focused so far on
heterogeneous tracks and argued that near the stall force the dynamics of the motor is strongly
affected by the heterogeneity embodied in a particular DNA or RNA sequence. Due to the
‘sequence disorder’ on which the motor is moving (many DNA sequences have only short
range correlations [38]) the displacement of the motor as a function of time ceases to be linear
in time close enough to the stall force. The displacement becomes sublinear in time, growing
as tµ, with µ varying continuously from 1 to 0 as the stall force is approached. As discussed
below, there are also anomalies in the diffusive spreading about the average motor position
which extend even further below the stall force.

In this paper we review some of these results, stressing several experiments which could
be performed to test the predictions of the model. We also explore the effect of heterogeneous
fuels on the motion of molecular motors. In [33] it was suggested that inhomogeneous fuel
concentrations could significantly enhance the regime near the stall force over which anomalous
dynamics is observed. Here we study this type of disorder numerically and illustrate the
dramatic effect of varying the concentrations of the different fuels used to power the motor.
For motors moving along heterogeneous tracks we also discuss the dynamics in the extreme
limit where local detailed balance is violated and motors never take backward steps. Finally,
we consider motors moving along a periodic substrate powered by different kinds of fuels. We
discuss, for simple cases, the expected velocity of the motor as the relative proportion of two
different types of fuel in the solution is varied. The behaviour of more complicated models is
also discussed.

2. The model

In this section we define the model used throughout the paper. We start with a special case
of the general class of n-state models explored by Kolomeisky and Fisher [23–25, 39] and
consider a ‘minimal’ motor with only two internal states. This simplified model reproduces
important features of previously studied systems and allows us to explore generic behaviour in
new situations in a minimal form. The model is easily generalized to account for heterogeneous
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fuels and tracks. When appropriate, we will mention how results are modified for general n-
state models. The model has been introduced and studied in detail in [33] and here we only
review its basic properties. We begin by assuming a perfectly periodic substrate. The location
along the one-dimensional track, x , is assumed to take a discrete set of values xm , where
m = 0, 1, 2 . . . labels distinct a and b sites. Although not essential, we assume for simplicity
that the distances between xm+1 − xm and xm+2 − xm+1 are equal and set xm+2 − xm = 2a0,
which is the size of a step taken by the motor after completing a chemical cycle such as
hydrolysis of ATP. In general, as discussed in [23], the distance travelled by the motor between
internal states may be different for different internal transitions. However, we do not expect
such modifications to affect the long time behaviour over a range of parameters near the stall
force. The dynamics embodied in the model is shown schematically in figure 1. Internal
states labelled a have an energy ε = 0 while internal states labelled b have a higher energy,
ε = �ε. Due to the consumption of chemical energy by the motor, detailed balance is, of
course, violated. However, since the thermal equilibration on scales of molecular motors (tens
of nanometres) is much quicker than the fastest timescales associated with conformational
changes in molecular motors (milliseconds) it is safe to assume that locally the system is in
thermal equilibrium. That is, the transition rates are governed by the temperature of the system
and the energy differences between states, modified by the energy supplied by the chemical
fuel whenever it is used. This is commonly referred to as local detailed balance. Our choice
of rates (in temperature units such that kB = 1), which satisfies the local detailed balance
condition, is

w→
a = (α e�µ/T + ω) e−�ε/T − f/2T

w←
b = (α + ω) e f/2T

w←
a = (α′ e�µ/T + ω′) e−�ε/T + f/2T

w→
b = (α′ + ω′) e− f/2T .

(1)

Following [7], there are two parallel channels for the motion. The first, represented by
contributions containing α and α′, arise from utilization of chemical energy biased by a
chemical potential difference �µ between, say, ATP and the products of hydrolysis ADP
and Pi. The second channel, represented by the terms containing ω and ω′, corresponds to
thermal transitions unassisted by the chemical energy. We assume that the externally applied
force F biases the motion in a particularly simple way (consistent with local detailed balance)
and define f = Fa0. If the substrate lacks inversion symmetry (a necessary condition for
directed motion, driven by �µ, when f = 0 [7]), we have α′ �= α and ω′ �= ω. If the fuel is
ATP, the chemical potential difference which drives the motion is [26]

�µ = T

[
ln

(
[ATP]

[ADP][Pi ]

)
− ln

(
[ATP]eq

[ADP]eq[Pi ]eq

)]
, (2)

where the square brackets [· · ·] denote concentrations under experimental conditions and the
brackets [· · ·]eq denote the corresponding concentrations at equilibrium.

The rate constants in equation (1) define a set of differential equations for the probability
Pn(t) of a motor occupying site n at time t . For odd n one has

dPn(t)

dt
= w→

a Pn−1(t) + w←
a Pn+1(t) − (w→

b + w←
b )Pn(t), (3)

while for even n
dPn(t)

dt
= w→

b Pn−1(t) + w←
b Pn+1(t) − (w→

a + w←
a )Pn(t). (4)

It is illuminating, especially when we consider rate constants which depend on the position
along a heterogeneous track, to study two limits of these equations. In the first the chemical
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Figure 1. Graphical representation of a simplified lattice model for molecular motors and the
relevant rates w→

a , w←
a , w→

b , w←
b and energy difference �ε. The distinct even and odd sublattices

are denoted by a and b respectively.

potential difference �µ and the applied force f are small compared to the energy difference �ε

so the b states relax quickly compared to a states. This condition implies that (w→
b + w←

b ) �
(w→

a +w←
a ), so in the long time limit to a good approximation the left-hand side of equation (3)

may be set to zero. Upon solving for Pn(t) with n odd and substituting into equation (4), we
obtain differential equations just for the even sites:

dPn(t)

dt
� w←

b w←
a Pn+2(t) + w→

b w→
a Pn−2(t) − (w→

b w→
a + w←

b w←
a )Pn(t)

(w→
b + w←

b )
, (n even).

(5)

Similarly in the limit �µ � �ε (with f near the stall force) the motor spends most if its
time in b states. Now, in the long time limit to a good approximation the left-hand side of
equation (4) may be set to zero. The remaining differential equations for the odd sites read

dPn(t)

dt
� w←

b w←
a Pn+2(t) + w→

b w→
a Pn−2(t) − (w→

b w→
a + w←

b w←
a )Pn(t)

(w→
a + w←

a )
, (n odd). (6)

Note that in both limits the dynamics of the motors at long times can be described
by a random walker moving on an effective energy landscape associated with what is in
general a non-equilibrium dynamics. Upon absorbing the denominator factors (w→

a + w←
a )

and (w→
b + w←

b ) into a rescaling of the rate constants in the numerator, the effective energy
landscape can be read off from equation (5) or equation (6). One finds that the effective energy
difference between two sites which are two monomers apart is given by

En+2 − En ≡ �E = T ln

(
w←

a w←
b

w→
a w→

b

)
. (7)

For a periodic track, this leads to a tilted energy landscape (with the tilt controlled by �µ and f )
and an effective energy difference between 2m adjacent monomers 2m�E . The tilted energy
landscape leads to diffusion with drift on long timescales and large length scales. The effective
energy landscape can also be obtained by assuming local detailed balance and equating the
rate asymmetry between two neighbouring even sites to an effective energy difference �E . It
is straightforward to verify from equation (7) with equation (1) that for a periodic substrate no
net motion is generated when the external force f = 0 and the chemical potential difference
�µ = 0. Also, when there is directional symmetry in the transition rates, α = α′, ω = ω′
and f = 0 no net motion is generated even when �µ �= 0. In the absence of this symmetry,
chemical energy can be converted to motion. These conditions are equivalent to those presented
in [7, 10] for continuum models and are exhibited here in a minimal model. The effect of the
externally applied force is simply to bias the motion of the motor in the direction in which it
is applied.
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The velocity for a motor moving along a periodic track in the two limits discussed above can
be obtained by taking the continuum limit and this yields v = 2a0(w

→
a w→

b −w←
a w←

b )/(w→
b +

w←
b ) for the limit specified by equation (5) and v = 2a0(w

→
a w→

b − w←
a w←

b )/(w→
a + w←

a ) for
the limit specified by equation (6). More generally, for periodic rates, it is straightforward to
calculate the velocity, for example using Bloch eigenfunctions |k〉 ∼ eikx and expanding the
eigenvalues in the wavevector k. The linear term gives the velocity and the quadratic part the
effective diffusion constant. For the velocity one finds

v = 2a0
w→

a w→
b − w←

a w←
b

w→
a + w→

b + w←
a + w←

b

. (8)

An alternative to studying the solution of the equations, which will be very useful
throughout this paper, is to use Monte Carlo simulations. The rates specified in equation (1)
can be simulated using the following procedure: to make the simulation efficient we first
normalize the entering or leaving rates for a site so that the largest one is unity. Then, at each
step we choose with equal probability attempting to move the motor to the right or left on the
lattice. Following this choice a random number is drawn from a uniform distribution in the
interval [0, 1]. The motor is moved in the chosen direction provided that the random number
is smaller than the corresponding rate. Thus, if a motor finds itself on site a in figure 1 and
w→

a > w←
a , w→

b , w←
b is the largest rate it will (after the rescaling) move one step to the right

with probability (1/2), one step to the left with probability (1/2)(w←
a /w→

a ) and it will stay
put with probability (1/2)[1 − (w←

a /w→
a )]. Note that the probability of actually moving one

step (right or left) to the b sublattice during a particular attempt is (1/2)[1 + (w←
a /w→

a )]. Once
the b sublattice is reached the procedure is repeated with the rates w→

b and w←
b (note that the

probabilities are still obtained by dividing by w→
a ). To compare, for example, velocities for

different choices of rates, the overall number of attempts is rescaled at the end by the fastest rate
(taken to be w→

a in the above example). The same procedure is followed for both homogeneous
and heterogeneous tracks. For the latter the largest rate is chosen from all possible rates of
hopping along the track. This protocol ensures relaxation to equilibrium in the absence of
chemical or mechanical driving forces [40].

In [33] we have analysed in detail the motion of the model when the track is not periodic.
Such tracks arise naturally, for example, for motors such as RNA polymerase and helicases
which move on DNA which has a well defined sequence. In this case the energy difference
�E(m) now becomes an explicit function of the location m along the track, due to the
dependence of the rates on the location on the track.

To understand the energy which arises for heterogeneous tracks consider the ‘integrating
out’ procedure applied to the three sites shown in figure 2, where three distinct motor binding
energies, E1, E2 and E3, are indicated explicitly. We work in the limit �µ � �E , with
�E = E1 − E2 or �E = E3 − E2, and f close to the stall force, so that the approximation
leading to equation (6) (‘integrating out’ site 2) is appropriate. As rates for the heterogeneous
cluster shown in figure 2, we take

w→
a (13) = [α(13) e�µ(13)/T + ω(13)] e−(E2−E1)/T − f/2T

w←
b (13) = [α(13) + ω(13)] e f/2T

w←
a (13) = [α′(13) e�µ(13)/T + ω′(13)] e−(E2−E3)/T + f/2T

w→
b (13) = [α′(13) + ω′(13)] e− f/2T .

(9)

where the arguments ‘(13)’ appended to the w s, α s, α′ s, ω s and ω′ s simply mean that
these are the heterogeneous rates appropriate to the cluster 1–2–3. In general, for different
clusters along the track the values of the parameters will vary. These rates obey local detailed
balance conditions for the two channels, and have a similar dependence on �µ(13) and f and
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Figure 2. The transition rates and energy levels of three sites, spanning two monomers
corresponding to a motor moving along a heterogeneous track. Note that E1 �= E3 due to the
non-periodicity of the track. The transition rates now depend explicitly on the location along the
track. To avoid cluttering, this dependence was suppressed in the figure.

various energy differences to the rates in equation (1). The notation �µ(13) indicates that the
chemical potential difference could depend on which NTP (in the case of RNA polymerase)
provides the energy for that particular step. Upon assuming fast relaxation of site 2 in figure 2,
from a formula similar to equation (7),

�E13 = E3 − E1 + 2 f − T ln

[
(α(13) e�µ(13)/T + ω(13))(α′(13) + ω′(13))

(α′(13) e�µ(13)/T + ω′(13))(α(13) + ω(13))

]
,

≡ E3 − E1 + 2 f + η13, (10)

equation (10) illustrates the following important points, applicable to motor molecules on
heterogeneous tracks more generally. (a) If �µ(13) = 0, then �E13 = E3 − E1 + 2 f , with a
similar formula for all neighbouring pairs of odd sites. Thus, in the absence of chemical energy,
we have a ‘random energy landscape’ with bounded energy fluctuations. (b) If α(13) = α′(13)

and ω(13) = ω′(13) (inversion symmetry), chemical energy does not lead to net motion
between sites 1 and 3, as discussed above. (c) In general, �E13 = E3 − E1 + 2 f + η13, where
η13 is a random function of position along the heterogeneous track due to the dependence of the
parameters on the underlying structure of the track. Upon passing to a coarse grained position
η(m), where m is the position along the track, we see that the effective ‘coarse grained’ energy
difference between two points m1 and m2 = m1 + m which are m monomers apart is given
by

∑m1+m
m′=m1

η(m ′). The landscape itself behaves like a random walk with fluctuations which
grow as

√
m, corresponding to a random forcing energy landscape (for RNA polymerase, the

different chemical potentials of the nucleotides in the transcript also contribute to a random
forcing landscape [33]).

The self-similar structure of the random force landscape leads to interesting dynamics
near the stall force. As the stall force is approached the dynamics slows down and becomes
dominated by motion between deep minima of the energy landscape [41]. The minima
correspond to specific locations along the track where the motor tends to pause. The distribution
of dwell times at these minima, P(τ ), averaged over the different locations on the track, is
expected to behave as τ−(1+µ), where µ (not to be confused with a chemical potential!) is
related to the force, fluctuations in the effective energy landscape and temperature. For a
random forcing energy landscape where the energy difference between two points is drawn
from a Gaussian distribution with a variance V = η(m)2, where the overline denotes an
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average along the sequence, one can show that [41]

µ( f ) = 2T |�E f =0 − 2 f |/V , (11)

where �E f =0 is the mean slope of the potential (averaged along the sequence) at zero force.
The exponent µ thus decreases continuously to zero as f increases toward the stall force of
the motor (defined by µ( fs) ≡ 0). For more general distributions of the effective energy
difference the value of µ might be different from equation (11) by factors of order unity.

Near the stall force the expected distribution of pause times becomes broader as µ becomes
closer to 0. The dynamics of the motors are altered from diffusion with drift when the pause
time distribution becomes very broad. The dynamics then depends on the numerical value of
µ defined in equation (11) [33, 34, 41]:

• µ < 1—Around the stall force, both the drift and diffusive behaviour of the motor
become anomalous. The displacement of the motor as a function of time increases
as tµ. Thus, in this region the velocity is undefined, in the sense that it depends on
the experimental observation time, tE, through v ∼ tµ−1

E . Moreover, the spread of the
probability distribution of the motor about its mean position also behaves anomalously
with a variance which grows as t2µ

E . Experimentally, for a given tE, this anomaly should
lead to a convex velocity as a function of force curve in the vicinity of the stall force. The
curve will become more and more convex as tE is increased; the velocity actually vanishes
for a range of f s near the stall force in the limit tE → ∞.

• 1 < µ < 2—Further away from the stall force the displacement of the motor as a
function of time grows linearly. At long times the velocity becomes independent of the
averaging window. However, the variance of the probability distribution around the mean
is anomalous and grows as t2/µ

E .
• µ > 2—Far below the stall force both the displacement and the variance of the probability

distribution around the mean grow linearly in time, as in conventional diffusion with drift.

These results can easily be shown to apply as well to general n-state models. Moreover,
it can be argued that even if several parallel channels exist for moving from one monomer to
another the results are also qualitatively unchanged [33].

Experimentally, the predictions of the model can be tested by measuring the displacement
of the motor as a function of time, averaged over different experimental runs (and, possibly,
sequences). Each time trace of the motor position will have an irregular shape due to pauses,
which will increase in duration as the stall force is approached, at specific locations along the
track. However, averaged over many time traces (or sequences) the expected displacement
will grow as tµ with µ < 1 close enough to the stall force. Note that if one averages over
time traces for a fixed sequence, the displacement is expected to grow as s(t)tµ where s(t)
has fluctuations of order unity, because the sequence information is not completely erased in
this case. An alternative experimental test would be to measure the distribution of dwell times
P(τ ). Because P(τ ) ∼ 1/τ 1+µ for large τ , the distribution becomes wider as the stall force
is approached. Monitoring P(τ ) has the advantage of probing the wide distribution even in
regimes which are not very close to the stall force.

We now consider limiting cases of the above model on heterogeneous tracks. These
illustrate a number of interesting features and suggest ways in which the anomalous dynamics
might be observed experimentally. We will also use the model to explore heterogeneous
chemical energy sources for motors on a periodic track. This situation may be realized in
motors such as kinesin which can use several types of chemical energy to move along the
track. From the two-state model described above we deduce the expected behaviour of the
velocity as the relative proportions of the different fuels are varied and mention generalizations
to more general n-state models.
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3. Strongly biased motors

In this section we study motors moving on a heterogeneous substrate in the limit where one
of the transition rates is strongly biased in a certain direction. An extreme limit occurs when
one of the transition rates, in, say, the backward direction, is zero. Although this limit violates
local detailed balance, it could be a reasonable approximation for certain strongly biased
experiments. One such model is a special case of the two-state model discussed in section 2:

w→
a = (α e�µ/T + ω) e−�ε/T − f/2T

w←
b = (α + ω) e f/2T

w←
a = ω′ e−�ε/T + f/2T

w→
b = ω′ e− f/2T .

(12)

Here we have set α′ = 0 so that in the �µ � T limit the motor will be strongly biased
to move towards the right. Physically, this situation corresponds to a motor which can use
chemical energy only to move in a certain direction. (We expect qualitatively similar results
for a wide variety of strongly biased ‘one-way’ models.) Next, we assume an extremely strong
bias �µ � T limit of the model such that αe�µ/T is very large but α and ω are so small that
w←

b can be set to be zero. This limit only makes sense far from the stall force. The stall force
of a model with w←

b = 0 (as for any other model where one of the reactions is assumed to
be unidirectional) is infinite: the effective energy landscape, equation (7), which describes the
dynamics of such a limit has an infinite slope. In this section we will compare numerically
trajectories when w←

b = 0 and when w←
b �= 0.

Using equation (11), the infinite slope of the effective energy landscape implies that
µ = ∞ > 2, so the dynamics is diffusion with drift. The linear drift is illustrated clearly in
figure 3 where trajectories of the strongly biased model are shown for different forces. Note
that even for very large forces the displacement of the motor as a function of time grows
linearly. It can be shown that the dwell time distribution on the track decays exponentially,
P(τ ) ∼ e−τ/τ ∗

, in contrast to the power law distribution expected when w←
b �= 0. To observe

any significant pausing clearly one must have f � �µ (see the inset of figure 3). In this limit,
however, w←

a � w→
a , and backwards motion cannot be neglected (see equation (12)).

In figure 4 we show the very different behaviour of simulations where we take the back-
hopping to be non-zero. Now we do not neglect ω and the backward hopping rate w←

b is
non-zero! For forces near the stall force the displacement of the motor as a function of
time seems to saturate even for a trajectory generated by a single numerical experiment for
a particular sequence. Such a behaviour is consistent with that expected from a sublinear
displacement of the motor. Note, however, that with the exception of the largest force, all
curves on long enough timescales are expected to yield, after an averaging over many thermal
realizations, an asymptotically linear curve (see the corresponding values of µ presented in the
figure). However, even for these curves, pausing is pronounced despite the fact that for small
resisting forces the motor rarely moves backwards.

4. Effect of heterogeneous fuel concentrations for a motor moving along a
heterogeneous substrate

For some molecular motors the type of fuel which is used for moving depends on the specific site
along the track. For example, in the case of RNA polymerase, which produces messenger RNA,
the energy from the hydrolysis of the specific NTP which is added to the mRNA chain is used
for motion. While a random forcing energy landscape would exist even if the chemical energy
released from every NTP were the same (see section 2), the different chemical energies enhance



Sequence heterogeneity and the dynamics of molecular motors S3879

Figure 3. Sample trajectories obtained on a heterogeneous track using the model with w←
b = 0 for

various values of the reduced force f/T . The lower the trajectory, the higher the opposing force.
Here we took with equal probability α = 5, ω = 1, ω′ = 2 and α = 0.2, ω = 1, ω′ = 1. In both
cases �ε = 0 and e�µ/T = 500. In the inset the two largest values of the force are presented in
more detail.

Figure 4. Trajectories obtained using the model of equation (12) with w←
b = (α + ω) e f/2T and

w→
a = (α e�µ/T + ω) e−�ε/T − f/2T . The lower the trajectory, the higher the resisting force. Here

we took with equal probability α = 5, ω = 1, ω′ = 2 and α = 0.2, ω = 1, ω′ = 1 along the
heterogeneous track. In both cases �ε = 0 and e�µ/T = 500. Anomalous displacements occur
for f/T > 2.47 while anomalous diffusion occurs for f/T > 2.38. The stall force is fs = 2.62.

the variance of the slopes, V , of the random forcing energy landscape (due to the different
chemical potentials of the nucleotides in the transcript). This in turn (see equation (11)) lowers
the value of µ as compared to the case of equal chemical energies.

As suggested in [33], the variance V could be further increased by increasing the
concentration difference between the different NTPs in the solution. In an extreme situation,
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Figure 5. Motor trajectories obtained using the model defined by equation (12). Here, substrate
heterogeneity is incorporated by taking with equal probability {α = 5, ω = 1, ω′ = 2} and
{α = 0.2, ω = 1, ω′ = 1}. The corresponding values of e�µ/T for the two different fuels are
denoted in the box. In both cases �ε/T = 0 and f/T = 0. Lower trajectories correspond to a
larger difference between the chemical potentials associated with the fuels.

where one of the NTPs is completely removed from the solution, the motor will stall at specific
locations where the NTP is needed. This trick is used in experiments to synchronize and
control the motion of RNA polymerases [42]. In this section we illustrate using the simple
model, equation (1), the effects of changing NTP concentrations on motor motion. Although
we work within a ‘minimal model’ we expect the same effects for more complicated models
of molecular motors with many internal states (for an example of such a model for RNA
polymerase see [43]).

To this end, we studied motors which can use two kinds of fuels depending on the location
along the track. We hold the concentration of one fuel fixed and lower the concentration of
the other by reducing the chemical potential associated with it. For reference we also study
the case when the fuels have equal chemical potentials. Figure 5 displays results of numerical
simulations of the model defined by equation (12). Similar results were obtained with the more
general model of equation (1). We show simulations with f/T = 0 and when for one fuel
e�µ/T = 500 and for the other e�µ/T = 500, 50 or 5. From a generalization of equation (2),
we see that this latter variation corresponds to a change of two orders of magnitude in the
concentration of the second fuel [26]. As can be seen from figure 5, the effect of reducing
one of the chemical potentials is to slow down the motion. However, note that for all fuel
concentrations the motor displacement as a function of time is linear with these parameter
values. Since at zero applied force one expects the motor always to be biased preferentially
in a given direction which is independent of the monomer, this behaviour will hold even for
larger differences in concentration.

The change in concentration of one of the fuels can make the regime of anomalous
dynamics much larger. In figure 6 we show the result of applying a force which opposes
the motion of the motors on the dynamics. As can be easily seen from the figure, the velocity
of the motors is, of course, lower in comparison to that when no force is applied. However, note
that the motion of the curve with the largest difference in chemical potential (barely visible at
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Figure 6. Motor trajectories obtained using the model equation (12) with an opposing force. We
again took with equal probability {α = 5, ω = 1, ω′ = 2} and {α = 0.2, ω = 1, ω′ = 1}, with
the corresponding values of e�µ/T for the two different fuels as indicated in the figure. In both
cases �ε/T = 0 and f/T = 1. Lower trajectories correspond to a larger difference between the
chemical potential differences.

the bottom) is very different. The motor almost immediately stalls after it starts moving. This
example illustrates clearly how changing the concentrations of the different fuels can make
the regime of anomalous dynamics easy to access at lower forces. In fact, averaged over many
thermal and sequence realizations, the curve with the largest difference in chemical potentials
shows a displacement of the motor which grows sublinearly in time, indicating that µ < 1.

5. Heterogeneous fuels on periodic tracks

In this section we consider a molecular motor which is moving along a periodic track in a
solution which contains more than one type of molecule which can supply it with chemical
energy. The situation arises for kinesin in the presence of both ATP and, say, GTP. It is known
that, while less efficient, alternative NTP molecules can also be used by kinesin to move along
the track [35–37]. We consider, for simplicity, a solution with two kinds of chemical fuels
within the simple two-state model (the analysis presented can easily be generalized to include
additional fuel types). In addition, we generalize our model to treat two separate cases. In
the first we assume that the internal states of the motor (i.e., the a and b sites in figure 1) are
independent of the fuel used so that the chemical fuels are only used to move between states
with fuel-dependent potential differences driving the changes. This situation arises when the
fuel from the motor is used and released so quickly that the motor is not bound to the fuel in
the ‘excited’ internal state. In this case the fuel binding to the motor does not define an internal
state. In the second case that we study we allow for additional internal states of the motor,
depending on which type of chemical fuel is bound to it. This situation arises when internal
‘excited’ states include a fuel bound to the motor. Since the motor bound to the two fuels
defines two distinct internal states, a direct thermal transition between them is not possible.
While both cases discussed below involve parallel pathways for transitions across a monomer,
they are distinct as regards the type of internal states.
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5.1. Case I: internal states of the motors are independent of the chemical fuel

This case amounts to a straightforward generalization of the rates in equation (1) to allow
for multiple fuels. As mentioned above, we assume that the internal states of the motor
are independent of the chemical energy and that chemical energy is only used to assist the
transitions. With two different chemical fuels, the generalized rates entering equations (3)
and (4) are now

w→
a = (α1 e�µ1/T + α2 e�µ2/T + ω) e−�ε/T − f/2T

w←
b = (α1 + α2 + ω) e f/2T

w←
a = (α′

1 e�µ1/T + α′
2 e�µ2/T + ω′) e−�ε/T + f/2T

w→
b = (α′

1 + α′
2 + ω′) e− f/2T .

(13)

There are now three parallel paths, two assisted by chemical energy, one thermal. The subscript
1 or 2 refers to whether fuel ‘1’ or ‘2’ is being used for the transition. Standard relations for
the chemical potential difference [26] imply that e�µi /T grows linearly with the concentration
of fuel ‘i ’ (see equation (2)). Because the extra channel is present, when one of the chemical
potential differences is set to zero the model reduces to the single-motor model but with
modified rates as compared to a motor in a solution where the fuel is completely absent. For
example, if �µ2 = 0 the model can be written in terms of equation (1) with the identifications
ω → ω+α2 and ω′ → ω′+α′

2. Note also that, in contrast to the case for disordered tracks where
the motion of the motor is described by a random walker moving on a random force landscape,
here the energy landscape is periodic except for a well defined tilt given by equation (7).

With the help of equation (8), it is straightforward to verify that for this model the velocity
takes the form

v = A + B[x1] + B ′[x2]

C + D[x1] + D′[x2]
, (14)

where [x1] and [x2] are the concentrations of fuel 1 and 2 respectively and A, B, B ′, C, D, D′
are complicated functions of the coefficients in equation (13). The velocity thus varies as a ratio
of two polynomials, each depending linearly on the concentration of both fuels. Consider, for
example, the velocity in an experiment where one of the fuels is held at constant concentration
and the concentration of the other is varied. The external force is set to f = 0 (varying f
did not affect the qualitative features discussed below). As shown in figure 7, the average
velocity smoothly crosses over from a small value to a larger value in a sigmoidal fashion as
the concentration of more energy rich fuel (‘fuel 1’) is increased. Note that �µ1/T varies
logarithmically with the concentration of fuel number 1 [26]. Thus, the concentration of fuel
‘1’ varies over many orders of magnitude for the range of �µ1/T shown in figure 7. In
typical experiments, only a small portion of this crossover may be visible. For small �µ1/T ,
motor movement is controlled by fuel ‘2’ while for large �µ1/T it is controlled by fuel ‘1’.
An analogous plot for motor velocity versus �µ1/T when fuel 2 is absent entirely is shown
for reference in figure 8. As expected, the velocity no longer exhibits a sigmoidal crossover
between two regimes.

5.2. Case II: internal states of the motors are coupled to the chemical fuel

Next, we consider a different model incorporating two fuels. We now assume that the type of
fuel molecule used to move the motor determines the entire chemical cycle which leads the
motor to move across one monomer. An example might be the n = 2 motor landscape shown
in figure 1 where one step (e.g., a site → b site) involves the fuel molecule binding to the
motor. In this case the entire sequence of transitions would be dictated by the fuel that is used.
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Figure 7. The velocity as a function of the chemical potential difference �µ1/T of fuel ‘1’. The
velocity is plotted in units where the size of a monomer (i.e., the lattice constant 2a0 in figure 1)
is set to 1, and arbitrary time units. We used a ‘nearly one-way model’ based on equation (13)
where the rates were chosen to be α1 = 5, α2 = 2, α′

1 = 0.01, α′
2 = 0.02, ω = 0.01, ω′ = 0.2 in

arbitrary units of inverse time and �µ2/T = 5, f = 0,�ε = 0. For reference the velocity with
only fuel of type ‘2’ with the same value of �µ2/T is v = 0.195.
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Figure 8. The velocity in arbitrary time units as a function of the chemical potential difference
�µ1/T where the other chemical channel associated with fuel ‘2’ is closed. The velocity
is plotted in units where the size of a monomer is set to 1. The rates were chosen to be
α1 = 5, α2 = 0, α′

1 = 0.01, α′
2 = 0.0, ω = 0.01, ω′ = 0.2, f = 0 in arbitrary units of inverse

time and �ε = 0.

Thus, the choice of rates (either in the forward or backward direction) would be dictated by
the initial step which is chosen at random, depending on the type of fuel utilized.

Since the state of the motor is directly coupled to the chemical fuel, a pure thermal
transition between the states is not possible (unless it involves moving across the monomer
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through parallel pathways not related to the motor, an effect which is ignored here). The new
feature is that the motor can move across a monomer by choosing one of two distinct chemical
pathways. This is in contrast to the model defined by equation (13) where two distinct chemical
pathways exist for passing between the internal states of the motor, but where the transition
across the monomer can occur via a mixture of different chemical (or thermal) pathways.

An example for such a model, where each fuel is modelled by a distinct channel, which
is a special case of the two-state model defined by (1), is given by

w→
a = α e�µ1/T − f/2T

w←
b = α e f/2T

w←
a = ω e f/2T

w→
b = ω e− f/2T ,

(15)

for the first channel and

u→
a = γ e�µ2/T − f/2T

u←
b = γ e f/2T

u←
a = ν e f/2T

u→
b = ν e− f/2T

(16)

for the second channel. The fuel concentrations enter through the chemical potential differences
�µ1 and �µ2 (see equation (2)). The relative fuel abundances therefore control the ratio of
the rates w→

a and u→
a . The model will be realized physically in a motor which binds a fuel

and uses its chemical energy in the transitions w→
a or u→

a . The transitions w→
b and u→

b involve
the release of the corresponding fuel. Here for simplicity we have set the energy difference
between the states to be zero and neglected parallel thermal channels. We do not expect the
qualitative results described below to be affected by such complications.

The velocity of the model can be calculated in a straightforward manner and is found to
be

v = 2a0
(u→

b + u←
b )(w→

a w→
b − w←

a w←
b ) + (w→

b + w←
b )(u→

a u→
b − u←

a u←
b )

(u→
b + u←

b )(w→
b + w←

b ) + (u→
b + u←

b )(w→
a + w←

a ) + (u→
a + u←

a )(w→
b + w←

b )
. (17)

Note that as in case I, the velocity behaves as a ratio of two polynomials which are linear in the
e�µi /T , and hence in each of the fuel concentrations (similar to equation (14)). Also similar is
the fact that the presence of a second channel alters the velocity even when one of the chemical
potential differences is zero. Again, due to the presence of the second channel the velocity
is lower than that of the motor in the presence of a single fuel. We do not present plots of
the resulting velocity as the concentration of one of the fuels is varied, since the qualitative
features are similar to those presented in the previous subsection.

Finally, we comment that more complicated scenarios (for example, the existence of
additional parallel pathways, or more general n-state models) might change the explicit
dependence on the concentrations of the fuels. However, we expect a general form of a
ratio of two polynomials in the concentrations of the fuels even in much more complicated
scenarios. Indeed, with a specific experiment in mind and some structural information on the
motor, one might be able to use such experiments, coupled with an analysis similar to that
presented above, to deduce the number of steps in the chemical cycle which depend explicitly
on the fuel concentration. For example, we have considered models where the internal states
are independent of the chemical fuel and found that the general velocity can be a ratio of
polynomials of a degree which is related to the number of steps which depend on the chemical
fuel. However, the detailed results were very dependent on the choice of rates made.
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6. Summary

In this paper we reviewed a recently introduced model for molecular motors [33] focusing on
effects of a heterogeneous track, such as single-stranded DNA or RNA. Particular attention was
given to the region where the displacement of the motor becomes sublinear in time and several
methods by which the anomalous dynamics might be observed were suggested. Furthermore,
we discussed the limit of strongly biased motors which can hop only in a certain direction.

Finally, we considered the effect of a motor moving on a periodic track using different
fuels, each supplying the motor with a different amount of chemical energy for its motion.
For simple cases we have given the expected dependence of the velocity of the motor as the
relative concentrations of the fuels are varied.
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